
Exercices de Physique Générale II (SIE GC) 22/05/2025

Série d’exercices n◦13

Solution de l’exercice 1

Le coefficient D a les dimensions d’une longueur au carré sur un temps :

D ∼ L2

τ
.

Pour estimer la valeur de D, on peut ainsi prendre la longueur caractéristique L du domaine
considéré, l’élever au carré, et la diviser par la durée caractéristique τ du phénomène de
diffusion. Dans le cas présent, on connait D et l’on cherche à en déduire τ . On peut donc
écrire :

τ ∼ L2

D
=

0,052

0,52 · 10−9
= 4,8 · 106 s.

La durée τ pour qu’un morceau de sucre se dissolve entièrement dans une tasse de café est
donc d’environ 8,3 semaines. On a supposé ici que les molécules de sucre se dispersaient
uniquement par diffusion. On voit donc tout l’intérêt d’utiliser la cuillère pour accélérer le
processus de mélange !

Solution de l’exercice 2

Pendant dt, une longueur l de fil produit une quantité de chaleur :

δQ = Plldt. (1)

Cette chaleur doit être transférée ver l’extérieur. En régime permanent, le flux est constant
pour chaque couche cylindrique.

On a donc, entre r et r + dr :

P =
δQ

dt
= −λAdT

dr
= −λ2πrl

dT

dr
(2)

Ainsi,

Pl.l = −λ2πrl
dT

dr
(3)

dT = − Pl

2πλ

dr

r
(4)

T0 − Ti = − Pl

2πλ
ln

r1
r0

(5)

Ti = T0 +
Pl

2πλ
ln

r1
r0

(6)

(7)
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Solution de l’exercice 3

1. L’équation de diffusion de la chaleur s’écrit :

∂T

∂t
= D

∂2T

∂z2
.

En posant θ = T − T̄ comme suggéré dans l’énoncé, on peut réécrire cette équation
comme :

∂2θ

∂z2
− 1

D

∂θ

∂t
= 0, (8)

avec la condition au bord suivante :

θ(0,t) = A cos(ωt). (9)

On cherche une solution de l’équation (8) de la forme θ(z,t) = a(z) exp(iωt). En
injectant cette expression dans (8), on trouve :

d2a

dz2
=

iω

D
a. (10)

En posant formellement λ2 = iω/D, on retrouve une équation différentielle du second
ordre, avec pour solution générale αe−λz + βe−λz ∗

Pour prendre la racine carrée et calculer λ, on réécrit la pulsation complexe sous une
forme polaire :

λ2 =
iω

D
=

ω

D
exp

{
iπ

2
+ 2iπn

}
, (11)

avec n un nombre entier quelconque. On trouve alors 2 solutions :

λ =

√
ω

D
exp

{
iπ

4
+ iπn

}
(12)

=

√
ω

D

(√
2

2
+ i

√
2

2

)
eiπn (13)

=
1

δ
(1 + i) (−1)n (14)

= ±1

δ
(1 + i) (15)

Sans perdre de généralité, prenons λ comme étant la solution ”+”, l’autre étant −λ.
La solution générale est alors :

θ(z,t) = αe−λz+iωt + βeλz+iωt = αe−z/δ+i(ωt−z/δ) + βez/δ+i(ωt+z/δ) (16)

Il n’est pas physique que la température diverge avec la profondeur, ce qui force
β = 0. De plus, la température étant une grandeur réelle, on doit donc prendre
la partie réelle de notre solution † : θ(z,t) = αe−z/δ cos(ωt − z/δ). Pour trouver la

∗. Cela peut sembler ”illégal” de résoudre cette équation différentielle comme cela, en oubliant que la
fréquence est ici purement complexe. Même avec λ complexe, la dérivée seconde de eλz est λ2e−λz . L’espace
des solutions est donc généré par eλz , pour tout λ (complexe ou non) tel que λ2 = iω/D. Puisque 12 =
(−1)2 = 1, les seules solutions possibles sont λ et −λ.

†. Cette étape peut sembler un peu hasardeuse. En fait, un ansatz a(z)eiωt a été choisi, mais d’autres so-
lutions sont possibles. En particulier b(z)e−iωt fonctionne également, pour b(z) satisfaisant la même équation
différentielle que a(z). Cela signifie que pour toute solution, son conjugué complexe est également solution. La
partie réelle peut être écrite comme une combinaison linéaire d’un nombre et son conjugué : ℜ(z) = (z+ z̄)/2.
Puisque l’équation différentielle pour θ est linéaire, toute combinaison linéaire de solutions est également
solution, donc il est tout à fait légal de prendre la partie réelle pour obtenir une solution réelle.
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constante d’intégration α, on utilise la condition au bord z = 0 :

θ(z = 0,t) = A cos(ωt) (17)

⇔ αe−0/δ cos(ωt− 0/δ) = A cos(ωt) (18)

⇒ α = A (19)

On retrouve donc bien la solution :

T (z,t) = T̄ +A exp
(
−z

δ

)
cos
(
−z

δ
+ ωt

)
, (20)

On voit que l’amplitude des fluctuations décrôıt exponentiellement avec la profondeur.
δ correspond à la profondeur caractéristique de décroissance à laquelle les fluctuations
n’ont plus qu’une amplitude égale à 37% de leur valeur à la surface.

2. On nous suggère de considérer un cycle journalier d’amplitude A = 5◦C pour la
température à la surface du sol. Une journée correspond à une durée de T = 24 ×
3600 = 86400 secondes, et donc à ω = 2π/T ≈ 7,3 · 10−5 rad/s. On trouve ainsi
que la profondeur caractéristique de décroissance de l’amplitude des fluctuations de
température vaut :

δ =

√
2D

ω
≈ 8,7 cm.

L’amplitude de fluctuation de la température à z = 25 cm de profondeur vaut ainsi :
A exp(−z/δ) ≈ 0,5◦C. En enterrant les canalisations à 25 cm de profondeur au moins,
on est ainsi sûr qu’elles seront protégées contre le gel en hiver.

3. La température à la surface du sol varie de façon quasi-sinusoidale au cours de l’année.
Sa période de fluctuation correspond à 365 jours, soit une pulsation de 2π/(365×24×
3600) = 2 · 10−7 rad/s. La profondeur caractéristique associée vaut ainsi : δ ≈ 1,7m.
Votre connaissance a donc intérêt à creuser sa cave à au moins 2 mètres de profondeur
pour s’assurer que la température n’y fluctuera que très peu au cours de l’année.

Solution de l’exercice 4

1. À partir de l’instant initial où les deux corps sont mis en contact, il y a diffusion
thermique du corps à la température T2 vers le corps à la température T1. Après
une période de transition, le régime permanent est atteint et les températures dans
les deux corps ne changent plus au cours du temps. On se retrouve ainsi dans le cas
schématisé sur la figure ci-dessous. La température dans le corps 2 vaut T2 loin de
l’interface (i.e. pour x ≫ 0) et tend vers Tc lorsque x → 0. De même, la température
dans le corps 1 passe de T1 pour x ≪ 0 à Tc pour x → 0.

T 

x 
0 

T2 

Tc 

T1 

corps 2 corps 1 

Il s’agit d’un cas identique à celui traité dans l’exercice 3, où chacun des deux corps
correspondrait au sol, et Tc à la température de surface. Cependant, Tc est constant
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dans le cas présent, ce qui correspond à une période d’oscillation infinie, c’est-à-dire
ω = 0. Par la suite, on ne va pas considérer le cas limite ω = 0, mais plutôt ω → 0, sans
quoi δ =

√
2D/ω → +∞. En reprenant la solution de l’exercice 4, avec A = Tc − T1

dans le corps 1 et A = Tc−T2 dans le corps 2, on trouve que les profils de température
dans les deux corps sont :

T (1)(x) = T1 + (Tc − T1) exp

(
x

δ1

)
cos

(
− x

δ1
+ ωt

)
, (21)

T (2)(x) = T2 + (Tc − T2) exp

(
− x

δ2

)
cos

(
x

δ2
+ ωt

)
, (22)

avec ω → 0. Le corps 2 correspond exactement au cas de figure traité à l’exercice 3,
puisque x crôıt lorsque l’on s’enfonce dans le corps. L’inverse est vrai pour le corps
1, ce qui explique que l’on a remplacé x par −x dans l’expression de T (1). On a
également distingué δ1 de δ2, puisque la conductivité thermique des deux corps n’est
pas la même.
Pour trouver Tc, on utilise le fait que le flux thermique au niveau de l’interface est le
même dans les deux matériaux :

JU,1(0) = JU,2(0) ⇒ −λ1
dT (1)

dx

∣∣∣∣
x=0

= −λ2
dT (2)

dx

∣∣∣∣
x=0

.

En utilisant les expressions (21)–(22) pour T (1) et T (2), on trouve :

λ1

δ1
(Tc − T1) {cos(ωt) + sin(ωt)} = −λ2

δ2
(Tc − T2) {cos(ωt) + sin(ωt)}

⇒ λ1√
D1

(Tc − T1) {cos(ωt) + sin(ωt)} = − λ2√
D2

(Tc − T2) {cos(ωt) + sin(ωt)} ,

où l’on a utilisé les relations δ1 =
√
2D1/ω et δ2 =

√
2D2/ω dans la deuxième étape.

N’ayant plus de facteur ω au dénominateur d’une fraction, on peut à présent prendre
la limite ω → 0. On a alors : cos(ωt) → 1 et sin(ωt) → 0, et donc :

λ1√
D1

(Tc − T1) = − λ2√
D2

(Tc − T2).

On est conduit à introduire l’effusivité thermique b = λ/
√
D, ce qui donne :

b1(Tc − T1) = −b2(Tc − T2) ⇒ Tc =
b1T1 + b2T2

b1 + b2
.

Ainsi, la température de contact est la moyenne des températures des deux matériaux,
pondérées par leurs effusivités et non leurs conductivités thermiques ou leurs diffusi-
vités.

2. Avec les données de l’énoncé, on peut calculer les effusivités des différents matériaux :

bpeau =
λpeau√
Dpeau

≈ 1,6 · 103 Wm−2 K−1 s−1/2,

bbois =
λbois√
Dbois

≈ 343Wm−2 K−1 s−1/2,

bacier =
λacier√
Dacier

≈ 8 · 103 Wm−2 K−1 s−1/2.

Dans le cas du toucher d’une pièce de bois à T2 = 100◦C = 373K, la température de
contact vaut :

Tc =
1,6 · 103 × 310 + 343× 373

1,6 · 103 + 343
= 324K, soit 48◦C,
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si la main est supposée à 310K (= 37◦C). En revanche, si le corps touché est une
plaque en acier inox, cette température vaut :

Tc =
1,6 · 103 × 310 + 8 · 103 × 373

1,6 · 103 + 8 · 103
= 363K, soit 90◦C,

d’où la sensation de chaud dans ce dernier cas.
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